
Optimizing Service Delivery with Minimal
Runtimes

Katharina Gschwind1, Constantin Adam2, Sastry Duri2, Shripad Nadgowda2,
and Maja Vukovic2

1 Massachusetts Institute of Technology
gschwind@mit.edu

2 IBM T.J. Watson Research Center
{cmadam, sastry, nadgowda, maja}@us.ibm.com

Abstract. In this paper, we argue that deploying applications inside
minimal runtime environments, which only contain the files necessary
and sufficient for the application to run, can cut down the operating
costs, specifically the costs for ensuring the application security and
compliance. We identify a way to deliver minimal runtimes as Docker
containers built from scratch. We describe a use case where minimal
runtimes simplify the service maintenance operations, by reducing the
number of updates for fixing security vulnerabilities.

1 Introduction

Keeping cloud applications secure is a complex process. Administrators need
to check services and their underlying operating systems for vulnerabilities pub-
lished on a daily basis by sources like Redhat security advisories ([1]), or Ubuntu
security notices ([2]). They also need to harden these services and their runtimes
against threats using benchmarks such as those defined by the Center for Inter-
net Security (CIS) ([3]). In addition to the deployed application, these processes
must be applied to the underlying OS, which in many cases is more complex
than the application itself. The OS requires a large amount of configuration and
updates, not necessarily related to the deployed application, to ensure that it
cannot be used by an intruder to gain access to the Virtual Machine and/or
Container and compromise it. Instead of implementing a process that secures
the underlying operating system, we propose to eliminate it altogether.

In this paper, we argue that deploying applications inside minimal runtime
environments, which only contain the code necessary and sufficient for the appli-
cation to run, can cut down the operating costs, specifically the costs for ensuring
the application security and compliance. We explore ways of automatically build-
ing and delivering such minimal runtimes, in the form of Docker containers built
from scratch. We build containers from scratch for redis, a popular open-source
application, run the original and the minimal redis image through a security
vulnerability advisor, and show that minimal runtimes can reduce the number
of re-deployments needed to keep up with various published security advisories.



2

2 Background

To secure an application, one must ensure that any vulnerabilities are remedi-
ated, and that the applications, as well as their underlying operating systems
are configured properly. Vulnerability remediation and compliance enforcement
are complementary actions that must be performed for several layers of software,
depending on the type of the underlying runtime of a specific application. Fig-
ure 1 provides an illustration of the layers involved for virtual machines (cloud-
enabled), regular containers (cloud-native), and minimal containers. Below, we
describe in more detail the security and compliance procedures in place for each
of these types of runtime.

Libraries and 
Binaries

Application

Guest OS

Kernel

Host OS / 
Hypervisor

Libraries and 
Binaries

Application

Guest (Container) 
OS

Kernel

Minimal Libraries 
and Binaries

Application

Kernel

Virtual Machine Container Minimal Container

Fig. 1: Comparison of Virtual Machines, Containers, and Minimal Containers.

2.1 Cloud-Enabled Applications

A VM running a cloud-enabled application today contains a full OS image (Linux
or Windows) hosting a primary user space application (e.g., MySQL or Nginx),
along with secondary services (e.g., SSH, syslog or NTP). These VMs contain
multiple packages, services or drivers that are not needed by their primary ap-
plication, but that increase their attack surface, and reduce their performance.
Vulnerability remediations might require a change window, and not happen in-
stantly. Performance-wise, patching can delay the system bootup (this happens
frequently on Windows servers). Integration with other systems (user control,
monitoring, inventory, patching, etc.) makes the task of enforcing compliance
and remediating vulnerabilities on these VMs long and complex.



3

2.2 Cloud-Native Applications

For containers built from an operating system image, the inherent complexity
of the underlying OS makes it hard for an administrator to know if a container
is running compliant configurations, or non-vulnerable code. The OS and other
services configuration is scattered across the file system, uses different formats;
many packages installed in the container are inactive. The study in [4] shows that,
in 2015, 64% of docker images in Docker hub had high profile vulnerabilities.
The problem has been solved since then for the latest release of a majority of
images, however, as new vulnerabilities appear, not only the latest release needs
to be patched, but also all the already existing deployments. This is our main
motivation to develop minimal runtimes. There is a common interest to reduce
the trusted code base for application runtimes, with unikernels [5] advocating
single address programming paradigms, or microcontainers [6] using statically
compiled ”go” applications or buiding containers from minimal Alpine images.

3 Implementing a Minimal Runtime

DockerSlim ([7]) is open-source software that creates minimal images including
only the files necessary and sufficient to run specific applications. For each im-
age, DockerSlim also creates Seccomp and AppArmor security profiles. It takes
as input a ”full” docker image built on top of an OS, and operates in three
phases: initialization, monitoring, and image/security profile generation. During
initialization, DockerSlim reverse engineers the dockerfile of the image provided,
gathering information about volumes, exported ports, created users, etc. Next, it
instantiates a container from the original image, modified to launch the docker-
slim-sensor executable within. Finally, DockerSlim establishes communication
channels to the instrumented container to send commands to the container, and
receive monitored data. During monitoring, DockerSlim runs two sensors in the
container: one tracks filesystem events and identifies the files and symbolic links
needed to run the container, the other traces system calls and generates security
profiles for the image. Finally, DockerSlim generates the minimal image and its
security profile by processing the reports generated by the sensors.

4 Case Study

To demonstrate the advantages of a minimal runtime environment, we have
downloaded a year-old ubuntu-based Docker image for Redis (version 3.2.2), and
generated a minimal image using DockerSlim. We used the IBM Vulnerability
Advisor (IBM VA [8], [9]) to analyze both the original and minimal images for
package-level security vulnerabilities, published in the Ubuntu security notices.

We had to make two changes for the IBM VA to function with images built
from scratch. First, to identify the security advisory service against which IBM
VA should check packages, we changed the DockerSlim code to include a file
that contains information about the OS for which the files were built. Second, as



4

the IBM VA takes as input package information, we needed to map individual
libraries to packages. With these changes, IBM VA was able to process slim
images as though they were full images. Note that since IBM VA works at the
package level, and a package consists of multiple files, IBM VA may report a
vulnerability for a file that is not used in the minimal image. Further analysis
of individual libraries in a slim image is needed to determine whether a package
vulnerability is present in it or not.

We found that the original image had 10 vulnerabilities, in 6 vulnerable
packages. The vulnerable packages were not necessary for the redis application
to function, therefore none of them was included in the minimal image generated
from scratch. Deploying a minimal container, at the time of the release of the
image, would have avoided dealing with 10 different security vulnerabilities, and
potentially as many re-deployments of the redis application.

5 Conclusion and Future Work

We have shown that minimal runtimes can cut down the number of updates that
address security vulnerabilities. We will improve upon the DockerSlim method
of generating images, and will conduct a large-scale evaluation of its security
benefits on the set of Docker images with more than one million downloads. To
ensure the completeness of the minimal runtime, we will add static analysis to
the dynamic analysis provided by DockerSlim, and will ensure that test suites
for the applications are automatically invoked during the building process.

References

1. Red hat customer portal security advisories. https://access.redhat.com/security/security-
updates/. Accessed: 2017-08-04.

2. Ubuntu security notices. https://www.ubuntu.com/usn/. Accessed: 2017-08-04.
3. Center for internet security. https://www.cisecurity.org/. Accessed: 2017-08-04.
4. Chris Van Tuin. A security state of mind: Compliance and vulnerability audits for

containers. In 2015 Usenix Container Management Summit, Washington, DC, 2015.
5. Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj

Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Uniker-
nels: Library operating systems for the cloud. In Proceedings of the Eighteenth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, pages 461–472, New York, 2013. ACM.

6. https://www.iron.io/microcontainers-tiny-portable-containers/. As of 2017-08-15.
7. Dockerslim (docker-slim): Optimize and secure your docker containers (free and

open source). https://dockersl.im/. As of 2017-08-15.
8. Byungchul Tak, Canturk Isci, Sastry Duri, Nilton Bila, Shripad Nadgowda, and

James Doran. Understanding security implications of using containers in the cloud.
In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 313–319.
USENIX Association, 2017.

9. Fábio Oliveira, Tamar Eilam, Priya Nagpurkar, Canturk Isci, M Kalantar, W Seg-
muller, and E Snible. Delivering software with agility and quality in a cloud envi-
ronment. IBM Journal of Research and Development, 60(2-3):10–1, 2016.


