
www.cs.helsinki.fi

A Research Agenda for
the Programmable World:

Software Challenges for IoT Era

Tommi Mikkonen
Dept. Computer Science

University of Helsinki, Helsinki. Finland
tommi.mikkonen@helsinki.fi

Evolution of the Internet – Moving to the Next Era!

Fundamentally, the Internet of
Things is all about transforming
physical objects into digital data
product and services.

• .

Thing “X” + Internet + Service -> Smart “X”

IoT Technology Landscape – a Cornucopia of Choices

• There are numerous
commercial and open source
technologies available for
nearly all the imaginable
areas in IoT system
development.

• Today, it is difficult to win by
technical differentiation or
platform-level work alone.

• Ultimately, this will be an
ecosystem play, as it simply
won’t be feasible to have
thousands of incompatible
everyday things and services.

Still, at the high level, all IoT platforms and
solutions are nearly identical

• .

Today, the Majority of Focus in the IoT Area
is on Data Acquisition & Data Analytics

This is truly revolutionary from commercial perspective – the impact will be at least as
significant as that of the emergence of virtual machines in mobile phones 20 years ago!

Meanwhile, a More Subtle Revolution is
Taking Place…

Hardware improvements
are enabling dynamic
programming capabilities
in unprecedented form
factors and price points.

This makes it possible to
turn everyday objects into
connected devices that
can be programmed
dynamically.

Where Will This Lead Us? Programmable World

Literally:

“Every
thing

in my realm
programmable

remotely”

Near-Term: A Lot of Incompatible Systems and APIs

Long-Term: Common Programmable World Solution

Common Developer API

Device
Management

Data
Acquisition

Device
Actuation

Real-Time Analytics / Offline Analytics

Notifications / Alerts

Confidential

Thank you!

Currently: Very Complex IoT Standards Landscape

Source: AIOTI WG3 (IoT Standardisation) – Release 2.6

Service & App

B2C
(e.g., Consumer Market)

B2B
(e.g., Industrial Internet Market)

Connectivity

AIOTI

Open Automotive Alliance

NB-IoT
Forum

NB-IoT
Forum

Desired Basic Programmable World API Functionality
1) Effortless discovery and management of things, based on various metadata such

as associated sensors, actuators and their current topology and location.

2) Acquisition and observation the state of the physical world through tapping
into the sensory values of the things, either by (1) reading the latest known
values, (2) reading historical values, or by (3) creating listeners to receive
streams of latest sensor readings.

3) Responding to the external stimuli and imposing changes on the physical world
through actuators, either (1) immediately or (2) by defining rules that will trigger
state changes when given conditions are met.

All of the above should be doable without complex setup issues or a lot of “boilerplate” code.
• without having to specify protocols or ports,
• without having to know the physical location of things,
• without having to know the specific type or manufacturer of device, etc.

Complex IoT Landscape – A Lot of
Verticals and Domains

Because of the large
number of verticals, it
can still be debated
whether there will
ever be a common
API set covering all
types of domains.

Programmable World – Software
Engineering Challenges
• How to discover, manage and visualize large, complex, dynamic topologies

of IoT devices?

• How to dynamically program IoT systems that consist of hundreds or thousands
or millions of devices?
• Mindset shift: from computers as “pets” to “cattle”, or “swarms” of devices.

• IoT systems are distributed systems, with intermittent, potentially unreliable
connectivity => How to reduce the programming overhead (boilerplate code)
that arises from having to prepare for various kinds of error conditions?

• How to flexibly migrate computation and data between the cloud and the
edge (devices, gateways) in order to balance computation, latency and
power consumption requirements?

• Ultimately: How to establish a common programmable world API set that would
work across devices and systems from various different manufacturers?

Research Topic Areas Taking Us to
Programmable World API
Beyond Data Analytics

A. From Rebootables to Systems that Never Sleep
B. Thing Management
C. Liquid Multi-Device Software
D. Edge Computing and Local Connectivity
E. Rethinking the Scale of Software Development & Deployment
F. Development Stack Considerations
G. Security
H. Tools

From Rebootables to Systems that
Never Sleep

• The vast majority of applications today are written for rebootables!
• IoT and cloud backend development require a different mindset!

TMS environments will make it possible to remotely
- manage,
- monitor and
- visualize complex topologies of devices,

Providing notifications and alerts on abnormal system conditions
Enabling remote reconfiguration and management of the overall
system.
The foundation and enabler for remote programming of IoT
devices

- Enabler to discover and reach large numbers of devices
that are under management in the system.

Thing Management & Thing
Management Systems

• By liquid software, we refer to a multi-device software
experience that can seamlessly “flow”
from one device to another.

• Virtualized but personal computing experience that is
independent of any particular device, OS platform, or vendor
ecosystem.

• Liquid software allows the users to seamlessly roam and
continue their activities on any available device or any “piece
of glass”.

Corning, Inc., A Day Made of Glass 2, 2012; http://www.youtube.com/watch?v=jZkHpNnXLB0

Liquid Multi-Device Software

Edge Computing and Local
Connectivity
Eight Fallacies of Distributed Computing
(L. Peter Deutsch, Sun Microsystems, 1994)

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology does not change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

For details, read: http://www.rgoarchitects.com/Files/fallacies.pdf

Developing for a ”pet” device (e.g. a toy car) is not that different
from programming an individual computer
The first big "a-ha" moment: Develop a system that consists of fifty
or more devices.
You can no longer …

- hook up a physical cable to each and every device,
- upload programs manually,
- tweak settings
- test application behavior individually on each device.

All the stages and device management to be automated, and run
in parallel for hundreds or thousands of devices.

Rethinking the Scale of Software
Development & Deployment:
From Pets to Cattle

Various setups are possible (and with increasing amount of
memory also viable)

- Hardware-only solutions, RTOS (e.g. FreeRTOS)
- Small-footprint language-specific virtual machines
(e.g. Tessel JavaScript device)
- Generic operating system (e.g. Linux)
- App specific operating systems (e.g. Android)
- Web server centric systems (e.g. Node.js)
- Container-based systems (e.g. Docker + Linux)

Development Stack Considerations

Security: The Final Frontier

Many design parameters that drive the development to different directions
- Price (development, maintenance, bill-of-material)
- Functions
- Compatibility
- Innovation capabilities
- Market share and demand
- …
- …
- …
- (many more features)

Security: The Final Frontier

Many design parameters that drive the development to different directions
- Price (development, maintenance, bill-of-material)
- Functions
- Compatibility
- Innovation capabilities
- Market share and demand
- …
- …
- …
- (many more features)
- Security (which is eventually turned off when there is even slightest problem)

Security: The Final Frontier

1990: Every thing in your home
has a clock & it is blinking 12:00

2020: Every thing in your home has
an IP address & the password is "admin"

Staging systems to as close as possible to the final system calls
for creating digital replicas in virtual reality (“digital twins”)

- DevOps, constant deployment & delivery, etc.
Various needs

- Training AI systems (e.g. https://goo.gl/2ocVLq)
- Designing distributed algorithms
- Running simulations
- Rapid feedback loop

Tools to Match Development
Practices and IoT Needs

Summary and Key Takeaways
• There is more to IoT than just big data acquisition, analytics and visualization.

• Hardware advances will make things around us connected and programmable,
thus leading us to a Programmable World.

• IoT development is different from PC, mobile or web application development.

• A generic end-to-end IoT architecture has already emerged, but today's
IoT development APIs are still rather vendor- or hardware-specific.

• There is a need for a common Programmable World API set that would support
device discovery, device management, data acquisition and device actuation
in a universal, vendor-independent fashion.

• There are very interesting research topics in this area!

Thank you! Gracias! Kiitos!

Any questions?

